
Page 1 of 9

CPSC1012 – Windows Forms Demo

Introduction
This demo is not part of the content for CPSC1012 and is provided here as a segue to more advanced

programming courses. The core concepts taught in CPSC1012 are pure console applications, but those

types of applications are very limited. One of the issues we had to overcome was to continue to change

user input to perform the calculations many times; we did this using looping structures. A Windows

Forms application can bypass the use of looping in many instances.

Creating the Project
1. Select the correct project type. This will be:

2. Configure your project:

3. Once created, you should see something like:

Page 2 of 9

Components of the Form
Notice that there is a new file, Form1.cs, in the Solution Explorer. This is the code for the form. This file

is two parts (although not shown in the Solution Explorer): one part is the design code, and the other is

the code for functionality. To see both, you will need to show the code. In the upper right of the

Solution Explorer window click on the < > to reveal the code:

Another thing to make note of is the code for Program.cs:

Page 3 of 9

You will NOT modify this code!

Design the Form
1. As this is a Graphical User Interface (GUI), you will need the graphical tools to add the form

elements to the form:

2. Set up your work environment to be:

Page 4 of 9

3. You will also need to make sure the Properties window is visible and expanded to see the

properties you will need to set for the form controls:

4. The form you need to design is to look like:

Page 5 of 9

Windows Forms Demo – Example Problem

Number 1: Number 2: Calculate Reset

Error message goes here

Addition:

Subtraction:

Multiplication:

Division:

5. Change the form title from Form1 to Windows Forms Demo – Example Problem:

a. Click on the form window in the designer

b. Go to the Properties tab and set the properties to be alphabetical (second icon at the

top of the Properties tab

c. Scroll down to fine the Text property and change the value in the right column

6. Add the first Label control (Number 1:):

a. From the Toolbox, drag a Label control to the form

b. Change the Text property to Number 1:

c. Change the (Name) property to number1Label

d. Make sure the label’s Tabindex is 0

7. Add the first TextBox control:

a. Drag a TextBox control from the Toolbox and place it to the right of the label you added

b. Change the (Name) to number1Textbox

8. Repeat steps 6 and 7 to add the other controls:

a. Label text, Number 2:, and name to number2Label

b. TextBox name: number2Textbox

Page 6 of 9

You should now have the form looking like:

9. Add the first Button control (Calculate):

a. Drag a Button control and place it to the right of the last TextBox

b. Change the Text property to Calculate

c. Change the (Name) to calculateButton

10. Add the second Button control (Reset) using step 9 as a sample:

a. Text property is Reset

b. Name property is resetButton

Your form should now look like:

11. You now need to make sure the Tabindex properties of the controls are sequential from 0 to 5.

12. Now add a Label control that will be used to display any error messages:

a. Text property is error

b. Font colour (ForeColor) is red (select the red colour from the Web colours):

c. Name is errorLabel

d. Optionally, you can make the label bold

13. Below the error label add the web controls to match the design:

a. Addition:

i. Label: Name is addLabel

Page 7 of 9

ii. TextBox: Name is addTextbox

b. Subtraction:

i. Label: Name is subtractLabel

ii. TextBox: Name is subtractTextbox

c. Multiplication:

i. Label: Name is multiplyLabel

ii. TextBox: Name is multiplyTextbox

d. Division:

i. Label: Name is divideLabel

ii. TextBox: Name is divideTextbox

Your design should now look like:

14. Now that all the controls are on the form, you need to resize the form by dragging the form box

control (lower right corner of the form) to get the size correct:

15. Once again, it is prudent that you check the Tabindex of the controls to make sure they are in

the correct sequence. Alternatively, you can run your form and tab through each TextBox and

Button control to verify the sequence is correct.

Code the Form
1. Open the Form1.cs code file and place the following code after the

InitializeComponent(); line:

errorLabel.Text = "";

This will make sure the word error does not appear when the program is first run.

Page 8 of 9

2. You will need a way to validate that the user enters a number, and not any other character(s), in

the TextBox controls. For this it is best to have a method that validates if the string value in the

TextBox can be converted to a double. Use the code below:

#region Input Validations
public static bool IsDouble(string inputString)
{
 bool isValid;
 double temp;
 try
 {
 temp = double.Parse(inputString);
 isValid = true;
 }
 catch (Exception)
 {
 isValid = false;
 }
 return isValid;
}//end of IsDouble
#endregion

Notice that this code is different from our GetSafeDouble(string prompt) method but its

function is to determine if the string can be converted to a double value.

3. The code for the Calculate button is done by:

a. Switch to the Form1.cs [Design] view

b. Double-click the Calculate button; this will generate an event method in the Form1.cs

code file

c. Switch to the Form1.cs code file to see the event method stub

private void calculateButton_Click(object sender, EventArgs e)
{

}

The details of how this works is beyond the scope of this demo. Suffice it to say that

when the user clicks the button, this event method will be called.

d. Add the following code to this method:

double number1,
 number2,
 addition,
 subtraction,
 product,
 quotient;
if (IsDouble(number1Textbox.Text.Trim()))
{
 if (IsDouble(number2Textbox.Text.Trim()))
 {

Page 9 of 9

 number1 = double.Parse(number1Textbox.Text.Trim());
 number2 = double.Parse(number2Textbox.Text.Trim());
 addition = number1 + number2;
 subtraction = number1 - number2;
 product = number1 * number2;
 quotient = number1 / number2;
 //put these values in the appropriate textboxes
 addTextbox.Text = addition.ToString();
 subtractTextbox.Text = subtraction.ToString();
 multiplyTextbox.Text = product.ToString();
 divideTextbox.Text = quotient.ToString();
 errorLabel.Text = "";
 }
 else
 {
 errorLabel.Text = "Invalid Number 2.";
 }
}
else
{
 errorLabel.Text = "Invalid Number 1.";
}

4. Now to code the Reset button. The Reset button will simply clear the form. Do this by:

a. Switch to the Form1.cs [Design] view

b. Double-click the Reset button

c. In the event method stub created, add the following code:

number1Textbox.Text = "";
number2Textbox.Text = "";
addTextbox.Text = "";
subtractTextbox.Text = "";
multiplyTextbox.Text = "";
divideTextbox.Text = "";
errorLabel.Text = "";

Test the Form
Now just run the form and see how it works. Debug and fix any errors.

