
Page 1 of 4

Arrays Exercise #1 - Using Arrays
Overview
Most of the data we encounter in everyday life occurs in groups rather than in individual pieces. We

tend to collect these related data items into conceptual units to which we assign names—a group of

birds is a flock, a collection of students is a class, and so forth. In C#, arrays are used to store groups of

similar items in a named collection. What makes array useful is the ease and efficiency with which you

can access individual items, particularly when all (or some) of the items in the array are accessed as part

of an iterative process—when finding the largest bird in a flock, for instance.

Background
An array is a named collection of data items. All the items in an array must be of the same type. You can

create arrays of integers, array of strings, and so forth. An array declaration specifies the name of the

array, the type of elements stored in the array, and the number of array elements (the size of the array).

In the following program the array pollutionLevel is used to store a set of pollution level readings.

// Reads six integers into array pollutionLevel and displays them
// to the screen three per line
class Program
{
 static void Main(string[] args)
 {
 const int PollutionArraySize = 6;
 // Array of six pollution level readings
 int[] pollutionLevel = new int[PollutionArraySize];
 string userInput; // To hold user keyboard input value
 // Input six integers into the pollution level array.
 Console.WriteLine("Enter the six pollution level readings: ");
 for (int index = 0; index < PollutionArraySize; index++)
 {
 userInput = Console.ReadLine();
 pollutionLevel[index] = int.Parse(userInput);
 }
 // Display the readings three values per line.
 for (int index = 0; index < PollutionArraySize; index++)
 {
 if (index % 3 == 0)
 {
 Console.WriteLine();
 }
 Console.Write($"{pollutionLevel[index]}");
 }
 Console.WriteLine();
 }
}

The declaration

int[] pollutionLevel = new int[PollutionArraySize];

creates an array of integers named pollutionLevel and reserves enough memory to store six integers.

Page 2 of 4

The elements in an array are numbered beginning with zero. You refer to an individual array element by

placing its number—called its subscript or array index—within square brackets immediately after the

array name. You denote the first element in the pollutionLevel array as pollutionLevel[0] the

second as pollutionLevel[1], and so forth.

In the preceding program, a series of pollution level readings are input using a loop in which the loop

counter, index, ranges from 0 to 5. For each value of index, the statements

userInput = Console.ReadLine();
pollutionLevel[index] = int.Parse(Console.ReadLine());

reads in a pollution level and stores it in array element pollutionLevel[index]. For example if you

entered the integer values

40

25

15

12

31

43

as the six pollution-level readings, your input data would be stored in pollutionLevel as followings:

pollutionLevel[0] 40
pollutionLevel[1] 25
pollutionLevel[2] 15
pollutionLevel[3] 12
pollutionLevel[4] 31
pollutionLevel[5] 43

Sample output:

Page 3 of 4

Warm-Up Exercise
Complete the following program by filling in the missing C# code.

// Finds the average of up to 100 scores.
class Program
{
 static void Main(string[] args)
 {
 const int MaxNumScores = _____________; // Max number of scores
 int count; // Actual number of scores
 double[] score = new double[___________________________]; // Array of size
 double sum = 0; // Sum of array elements
 string userInput; // To hold user keyboard input value
 // Prompt the user for the number of scores.
 Console.WriteLine("Enter the number of scores: ");
 userInput = Console.ReadLine();
 count = int.Parse(userInput);
 // Read in the scores and store them in the array.
 Console.WriteLine("Enter the scores: ");
 for (int index = _____; index < ______________; index++)
 {
 userInput = Console.ReadLine();
 ____________________________ = double.Parse(userInput);
 }
 Console.WriteLine();
 // Find and display the average of the scores
 for (int index = ____; index < _____________; index++)
 {
 ___; // Sum the scores
 }
 Console.WriteLine($"The average is {sum / count}",);
 }
}

Page 4 of 4

A Picture’s Worth a Thousand Values
Data is often easier to interpret when it is displayed in a graphic form. Pie charts, line graphs, and bar

charts are all examples of graphic representation of data. In this exercise you generate bar graphs like

the one displayed below:

Step 1: Create a program named Bar1 that displays a bar graph from a set of integer values entered by

the user. The user first enters the number of bars in the graph, followed by a set of integer values (one

per bar). Your program then displays a bar graph in which each bar is formed using a row of asterisk.

From example, a row representing the integer value 38 would contain 38 asterisks. Assume that the

graph can have no more than 10 bars and that the integer values range from 0 to 50.

Input: The number of bars (up to 10)
A list of integer values in the range 0 to 50

Output: A bar graph

Be sure to display the bar graph scale (0-50) shown in the preceding bar graph.

Step 2: Complete the following test plan.

Test Plan for Bar1

Test case Test
data

Expected result Checked

Bar graph
with the
max data
value

5
25
50
42
40
31

Bar graph
with the
max
number of
bars

